An Approach for Determining the Number of Clusters in a Model-Based Cluster Analysis

نویسندگان

  • Serkan Akogul
  • Murat Erisoglu
چکیده

To determine the number of clusters in the clustering analysis that has a broad range of applied sciences, such as physics, chemistry, biology, engineering, economics etc., many methods have been proposed in the literature. The aim of this paper is to determine the number of clusters of a dataset in a model-based clustering by using an Analytic Hierarchy Process (AHP). In this study, the AHP model has been created by using the information criteria Akaike’s Information Criterion (AIC), Approximate Weight of Evidence (AWE), Bayesian Information Criterion (BIC), Classification Likelihood Criterion (CLC), and Kullback Information Criterion (KIC). The achievement of the proposed approach has been tested on common real and synthetic datasets. The proposed approach based on the corresponding information criteria has produced accurate results. The currently produced results have been seen to be more accurate than those corresponding to the information criteria.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A hybrid DEA-based K-means and invasive weed optimization for facility location problem

In this paper, instead of the classical approach to the multi-criteria location selection problem, a new approach was presented based on selecting a portfolio of locations. First, the indices affecting the selection of maintenance stations were collected. The K-means model was used for clustering the maintenance stations. The optimal number of clusters was calculated through the Silhou...

متن کامل

A Clustering Based Location-allocation Problem Considering Transportation Costs and Statistical Properties (RESEARCH NOTE)

Cluster analysis is a useful technique in multivariate statistical analysis. Different types of hierarchical cluster analysis and K-means have been used for data analysis in previous studies. However, the K-means algorithm can be improved using some metaheuristics algorithms. In this study, we propose simulated annealing based algorithm for K-means in the clustering analysis which we refer it a...

متن کامل

New Approach for Customer Clustering by Integrating the LRFM Model and Fuzzy Inference System

This study aimed at providing a systematic method to analyze the characteristics of customers’ purchasing behavior in order to improve the performance of customer relationship management system. For this purpose, the improved model of LRFM (including Length, Recency, Frequency, and Monetary indices) was utilized which is now a more common model than the basic RFM model apt for analyzing the cus...

متن کامل

ارائه یک الگو ترکیبی داده کاوی با استفاده از قواعد انجمنی و خوشه بندی برای تعیین استراتژی تخفیف دهی، مطالعه موردی شرکت پخش پگاه

Sales promotion is important issue in most of sales and distribution companies and finding the most appropriate strategy for this subject is marketers’ challenge. Discounting (offering) is one of sales promotion strategies. Using the fixed and constant discounting strategy for all customers and on all goods reduces chance for success. Discounting strategy needs a model for providing best ...

متن کامل

Analysis of Tourist Cluster in Mazandaran Using SWOT Approach

Clusters are geographically close groups of related companies or institutions related to a certain area which are inherently more efficient than the other companies due to advantages such as being located in one place, networks, external knowledge, variability of human capital, etc. Today, development through clusters plays a pivotal role in the economic and industrial policies of developed...

متن کامل

An Optimization K-Modes Clustering Algorithm with Elephant Herding Optimization Algorithm for Crime Clustering

The detection and prevention of crime, in the past few decades, required several years of research and analysis. However, today, thanks to smart systems based on data mining techniques, it is possible to detect and prevent crime in a considerably less time. Classification and clustering-based smart techniques can classify and cluster the crime-related samples. The most important factor in the c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Entropy

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2017